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Abstract. The puzzling properties of the first-order phase transition in YbInCu4 and its alloys
in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple
entropy transition for free Yb ions. In particular, it turns out that the transition line in the (B, T )-
plane is very close to the elliptic shape, as it has been observed experimentally. Similar calculations
are done, and the experiments are proposed for the (γ –α) phase transition in Ce in Megagauss fields.
We speculate, that in the case of YbInCu4 the first-order transition is a Mott transition between a
higher temperature phase in which localized moments are stabilized by the entropy terms in the
free energy, and a band-like non-magnetic ground state of the f-electrons.

For years the most famous example of the first-order transition into a state with an intermediate
valence has been the isostructural γ –α transition in metallic Ce (for the phase diagram of Ce,
see [1]). Changes in the valence state are usually judged by the change in the unit cell volume
or by spectroscopic means, which strictly speaking do not always provide exact valence values.
Although a structural transition in a crystalline matter possessing a critical point in the (P, T )-
plane is of great interest by itself, an observation of the γ –α transition in Ce has created a new
field of study: that of intermediate or mixed valence (MV) states in rare earths and actinides
(both for elemental metals and intermetallic compounds).

While the (γ –α) transition in Ce takes place in the pressure range P∼10–20 kBar, the
isostructural transition in YbInCu4 [2] is observed at Tv∼40 K and at ambient pressure [3]
(the major experimental results are best summarized in [4–6]). Looking similar to the Ce
‘isomorphic’ transition, it has recently attracted a lot of interest due to the possibility of
studying that phenomenon in much greater detail.

In the following we first address the issue of the phase diagram of YbInCu4 in the (B, T )-
plane, where B is a magnetic field, T is a temperature. Indeed, among many interesting
results of [5, 6], the most suprising one is the universality of the first-order transition line for
YbInCu4 and its alloys. Namely, being expressed in the reduced variables (B/Bc0, T /Tv0)

the transition line separating the high-temperature phase (paramagnetic, local moments) and
the low-temperature ‘metallic’ phase is a perfect circle (where Tv0 is the structural transition
temperature in the absence of the magnetic field and Bc0 is the critical field at T = 0). We will
show that these results are surprisingly well described in terms of an entropy first-order phase
transition between the local f-moment phase and another phase probably of a less ordinary
nature. The origin of this phase, however, seems not to be important if this second phase is
characterized by a larger energy scale. If the same ideas were applied to the (γ –α) transition
in Ce, it would have predicted similar behaviour in high magnetic fields with Bc0∼200 T.
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This is the achievable field range for modern Megagauss magnetic field experiments [8]. A
characterization of the (γ –α) transition in Ce not only in the (P, T )-plane, but also in the
(B, T )-plane, thus looks feasible and is of great interest.

The valence of Ce in the γ -phase is very close to the integer f-occupancy [9], i.e., in the
atomic configuration (Xe + 4f5d6s2) [10] all d- and s-electrons of Ce go to the metallic bands.
In accordance with Hund’s rule the ionic ground state has the total angular momentum J = 5/2
which is split further in the cubic environment into a 7 doublet and a 8 quartet (in the Ce
γ -phase 7 lies below 8). Correspondingly for Yb, the atomic configuration (Xe + 4f146s2)

results in the trivalent Yb3+ ionic configuration for the high-temperature YbInCu4-C15b phase,
leading, to a localized f-hole. The f13(J = 7/2) ground state is split by the crystal field into a
quartet (8) and two doublets (6 and 7). Inelastic neutron studies [11] at T > 45 K reveal
the crystal field scheme with 6 and 7 lying at 3.2 meV and 3.8 meV respectively above the
ground state quartet 8.

The first-order transition line is determined by:

FU(B, T ) = FL(B, T ). (1)

In (1) FL and FU stand for the free energies of the upper and lower phases. We emphasize once
again, that the main assumption we use below is that the characteristic energies governing the
behaviour of the two phases differ significantly. We denote these scales as T U

K and T L
K , two

effective ‘Kondo temperatures’, in accordance with the existing tradition in the experimental
literature to plot data versus the isolated Kondo centre properties [3, 5, 6] (for extensive
discussion of the theoretical results for the degenerate Anderson models and the experimental
results, see [12]).

For YbInCu4 T
U
K � 25 K while T L

K � 500 K, as estimated in [7, 13]. With Tv , the
temperature of the ‘valence transition’, for Yb and its alloys lying in the range 10–100 K and
Bc ∼ 50 T [5, 6], the FL(B, T ) in (1) can be taken as a constant (neglecting the magnetic
susceptibility term), while for the FU(B, T ) with the trivalent Yb3+ considered as a local free
ion, one has:

FU(B, T ) = E0 − T · S(B, T ) (2)

where the temperature dependence of the energyE0 of the itinerant band is neglected below Tv
(this assumption is discussed in more detail below). Correspondingly, the first-order transition
line in the (B, T ) plane is given by the equation:

T · S(B, T ) = const (3)

where the entropy is determined by the Yb3+ multiplet structure only.
The magnetic susceptibility χ(T ) of YbInCu4 above Tv0 = 42 K follows the Curie–

Weiss law with an effective moment only negligibly (by 5%) smaller than the whole J = 7/2
ground-state moment [6, 13]. Thus, we first neglect the crystal splitting and write:

T · S(B, T ) = − T ln

{
J∑

m=−J
exp

(
−gJµBB

T
m

)}
(4)

where gJ is a g-factor (for J = 7/2, gJ = 8/7). From (4) the relation aµBBc0 = Tv0 between
the critical field Bc0 at T = 0 and the value of the structural transition temperature Tv0 at zero
field, is of the form:

gJ JµBBc0 = Tv0 ln (2J + 1) (5)

which gives a ≈ 1.9 for J = 7/2, a result which is remarkably close to the experimental value
a � 1.8 [6].
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Figure 1. Function R(φ) (see text, equations (9) (10)) calculated for Yb3+ (J=7/2). Deviations of
R(φ) from 1 do not exceed 6%.

We rewrite equations (3) and (4) for the phase transition line using the new reduced
variables β = B/Bc0 and τ = T/Tv0 and with the help of (5) we obtain:

τ ln

{
J∑

m=−J
exp

[
−m

(
β

τJ
ln (2J + 1)

)]}
= ln (2J + 1). (6)

Using the parametric form β/τ = tanφ and the identity:

β2 + τ 2 = τ 2cos−2φ (7)

one may re-write (6) as:

β2 + τ 2 = R(φ) (8)

where

R(φ) = ln2 (2J + 1)

{
cosφ · ln

[
J∑

m=−J
exp

(−m ln (2J + 1)tanφ

J

)]}−2

. (9)

The plot of the function R(φ) is shown in figure 1.
Since the deviation of R(φ) − 1 from zero does not exceed 0.06, we arrive at the main

result of [6, 13]:

β2 + τ 2�1. (10)

Postponing a detailed discussion for further publication, it is nevertheless necessary to highlight
some essential features of our picture. The first interesting question is whether the account of
crystal-field split-multiplets would improve the overall agreement with experiments. Although
we have analysed the relation:

aµBBc0 = Tv0 (11)
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in terms of the crystal field Hamiltonian:

Ĥ = Ĥcrystal + gJµB Ĵ · B (12)

we do not focus on the results here, because (11) must display some cubic anisotropy which
has not been experimentally studied yet (two components in (12) do not commute with each
other). We will limit ourselves to a comment that the energy levels’ scheme for (12) follows
straightforwardly from making use of the explicit wave-functions [14] for the representations
6, 7 and 8. For the magnetic field, applied along the main cubic axis, it turns out that the
experimental value a � 1.8 [6,13] is again closely reproduced in such analysis. Together with
the contribution from the low-temperature paramagnetic phase susceptibility in equation (1),
this value may change in the limits a � 1.9 ± 0.1. We also would like to emphasize that the
entropy:

S(Tv0)⇒ ln

{
4 + 2exp

(
− E6

Tv0

)
+ 2exp

(
− E7

Tv0

)}
(13)

with E6, E7 taken from [11], is rather close to its value 0.8 ln 8 as integrated through Tv0

(see [6,7,13]) for YbInCu4, which indirectly confirms the applicability of an isolated crystal-
field split-hole state for Yb3+ paramagnetic ion.

The Yb3+ hole occupation in the high-temperature state determined from Yb-L3 x-ray
absorption for most of the compositions studied in [5] turns out to be very close to the Yb3+

trivalent state. This last fact, however, does not yet preclude that the upper phase may have
developed pronounced Kondo effects with TK � 25 K, as e.g., as stated in references [5,6,13].
On the other hand, it is not clear whether the existing data shows considerable deviations from
the free-ion behaviour for the upper phase. However, if it were so, (2) would not have been
correct at low temperatures. To verify that, one may choose for FU(B, T ) another expression,
say, the exact solution for the Kondo model or for the degenerate Anderson model. In the
non-magnetic phase the scale, TK ≈ 500 K [13] is rather large and one may neglect the
temperature dependence in FL(B, T ) at temperatures below 50–100 K. As for the conduction
band electrons, the typical energy scale for Ce would be of the order of 1 eV. Such a scale for
YbInCu4 and its alloys comprises probably only ∼ 0.1 eV, as discussed below.

It would be interesting to check, of course, whether the circular shape (10) of the transition
line in the (B, T )-plane is indeed due to the entropy transition in the free ion scheme of equations
(2) and (3) or it could be that the result is merely numerically robust. Unfortunately, the
Anderson model of thermodynamics in high magnetic fields has been studied in the Coqblin–
Schriffer model limit (the charge is fixed) for Ce (J = 5/2) but not for Yb (J = 7/2). Even
for Ce, there are published results only for magnetization and specific heat (see [12]). To
obtain the free energy expressions, one would need to integrate these data back, or solve the
Bethe–Ansatz equations again (we postpone this for future studies).

In figure 2 the phase diagram in the (B, T )-plane shows the first-order phase-transition
line (solid), calculated for Ce according to (4) (J = 5/2, gJ = 6/7). Its shape is again close
to a circle in reduced variables (dashed line): the deviations from the circle do not exceed
≈ 8%. The metamagnetic (γ –α) transition in Ce has not yet been measured, to the best
of our knowledge. One sees that the low-temperature values of magnetic fields are in the
experimentally accessible Megagauss range (Bγ ∼ 185 T). The experiment is of considerable
interest and allows one to verify the applicability of the free-ion model we are using also for
the Ce case.

Finally, let us discuss the physics, which may be responsible for the transition in YbInCu4.
A first attempt to describe the Ce (γ –α) transition was the Falicov–Kimball–Ramirez (FKR)
model [15]. Although the FKR model is capable of reproducing the appearance of the critical
point on the (γ –α) transition line in the (P, T )-plane, it does not reproduce such crucial
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Figure 2. The line (solid) of the first-order phase-transition in the (B, T )-plane for Ce γ –α
transition. In the reduced variables, deviations from the perfect circle (dashed line) would not
exceed 6%.

features of the α-phase as its intermediate valence. Another approach in which the (γ –α)
transition is ascribed to the Mott’s first-order transition in a subsystem of f-electrons has first
been discussed in [16].

Very often the (γ –α) transition in Ce is interpreted in terms of the Kondo volume collapse
(KVC) model [17, 18]. In the KVC model Ce atoms at the transition are treated as Ce3+

ions in both α and γ phases (approximately one electron in the f-shell), although in the two
different Kondo regimes. As is known, the Anderson impurity model reproduces the Kondo
behaviour in the regime when charge fluctuations are fully suppressed, and provides for the
TK the expression:

TK ∝ exp

{
−| ε∗

f |


}
(14)

where | ε∗
f | is the effective position of the localized level below the chemical potential and the

level’s width  ∝ V 2ν(εF ) depends on the hybridization matrix element,V , and the density
of states at the Fermi level, ν(εF ).

The KVC model [17] connects the first-order transition with strong non-linear dependence
of the Kondo scale (14) (| ε∗

f | ) on the volume through the volume dependence of the
hybridization matrix element (in Ce change in the unit cell volume is large, δv/v ∼ 20%!).
Our arguments in the beginning of the paper, regarding the two different Kondo scales as
needed for the applicability of (3), agree well with the values for Ce [18]:

T α
K�81.2 ± 12.2 meV T

γ

K�8.2 ± 1.5 meV.

Nevertheless, the KVC model seems not to be applicable in case YbInCu4, where the
volume changes are extremely small [3, 5–7]. For that reason, the FKR model has recently
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been revisited in [19]. It is interesting that, although being somewhat sensitive to the choice of
the model parameters, the elliptic shape of (10) for the phase-transition line in the (B, T )-plane
is preserved in the calculations [19]. This is probably due to the same mechanism as above,
i.e., due to large differences in the energy scales for the two phases (it seems however that
the constant a in (11) strongly depends on the choice of parameters). Nevertheless, the FKR
model can hardly be applicable for the YbInCu4 compound. In addition to its well known
drawbacks, such as an absence of hybridization, large changes in the nf occupancy, it seems
that the peculiarities of this compound may originate in somewhat unusual features of its non-
magnetic analog LuInCu4. This point has already been discussed in [20]. In [20] the authors
suggested a mechanism based on the band structure calculations [21, 22] for the semimetallic
state observed both in LuInCu4 and YbInCu4 (Yb3+, the high-temperature phase!) [5,6]. In this
state the εf level falls into a ‘pseudogap’ (or a dip in the DOS) at the choice of the chemical
potential corresponding to the Yb3+ configuration. If the exponential form for TK in (14)
remains correct, the strong non-linearity in (14) would now come from the rapid changes in
the values of the DOS at the Fermi level [20]. Thus, the high-temperature state (the one above
Tv0 � 42 K) is stabilized by the entropy gain, while the phase with the higher DOS at the
Fermi level is preferred at lower temperatures. The new state would, hence, correspond to a
non-integer valence Yb2.8+ as measured in [5].

The feature, which remains not well understood within the above explanation, is that the
Hall coefficient decreases so sharply in the low-temperature state, that the number of carriers
becomes comparable with the stoichiometric value for the divalent Yb ion (no hole in the
f14-shell). The increase is too large compared with the valence change ≈ 0.2 [5]. The energy
scales involved and the change in the Hall coefficient are also inconsistent with the results
of [21, 22]. Indeed, -E, the energy change per Yb using equations (1, 2) is:

-E = Tv0 ln (2J + 1) ∼ 90 K (15)

i.e. is too small to account for the large variation in the number of carriers. We propose another
view on this problem, namely a weak Mott transition. At T > Tv0 localized moments Yb3+

are stable due to the entropy gain, and exist as the localized holes. Like LuInCu4, (Yb3+)InCu4

is a band-like semimetal with a small carrier concentration and accordingly screening is weak,
favouring localization of the f-electrons. Below Tv0 the valence change is small and occurs
on the scale given by the volume of the electron-hole pockets. We speculate that after the
transition into the low-temperature phase even the f-electrons form a band state, so that a small
change in ‘occupation’ numbers would not contradict to an emergence of a large f-like Fermi
surface. Thus, the mixed-valence transition is driven by the change in the electronic screening.
This picture has similarities with ideas developed in [16] for Ce (note, however, that Ce is a
metal in both phases).

An indirect support to these views may be found in the recent band structure calculations
[23]. From [23], one may conclude that the change of the Yb valence ∼ 0.2 at the 42 K would
just result in a shift of the chemical potential by ∼ 0.01 eV inside the strongly featured DOS
with a broader width of the order of 0.1 eV (see figure 8 in [23]). This shift provides a correct
magnitude for the energy change as estimated by (15). The band picture is also in reasonable
agreement with rather high values for the Sommerfeld coefficient in the linear term for the
electronic specific heat, γ ≈ 55 mJ mole−1 K2.

To summarize, we have shown that the entropy transition between the free-ion
paramagnetic state and the low-temperature metallic state perfectly explains not only the
elliptic shape of the transition line in the (B, T )-plane but also provides correct numerical
results for its parameters. Based on similar calculations, we have suggested an experiment on
the metamagnetic transition between the (γ –α) phases in cerium. As for the true nature of
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the transition itself, we suggest that in YbInCu4 it is a weak Mott transition between a f-band
metal and the semimetallic phase with the localized Yb3+-holes.
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A K Zvezdin thanks the National High Magnetic Field Laboratory (NHMFL) for their kind
hospitality. This work was supported by the NHMFL through the NSF cooperative agreement
DMR-9527035 and the State of Florida.
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